2010

Biomass Dryers

Presented By
GenCap Technologies Inc
9/9/2010

Table of Contents

ist of Figures2
OTARY DRYERS3
Companies3
LASH DRYERS/PNEUMATIC DRYERS 4
Companies 4
RING DRYERS (modified flash dryer)5
Companies 5
LUID BED DRYERS 6
Companies 6
PRAY DRYERS7
Companies7
ARTICLES
From Operating Ease to Operating Costs: Weighing Differences in DDGS Dryers 8

List of Figures

Figure 1 GEA Barr-Rosin Flash Dryer	. 4
Figure 2 Open system of a Fluid Bed Dryer	
Figure 3 GEA Niro Spray Dryer diagram	7

ROTARY DRYER

Purposes

- Chemical
- Pharmaceutical
- Food
- · Maize germs
- Powders
- Crystalline materials

Structure

- Cylinder shell inclined at angle (0-5 degrees)
- Function: conveyor and heating device
- · Lifting flights inside to increase contact with surface area

Cost and Output

- \$122 000 per year to maintain
- 74.8% capital
- 25.2% operational
- Produce 150 kg/h db dried potato cubes

Advantages

• 80-90% of moisture reduced

- Low maintenance
- Large volume

Disadvantages

- Can only dry certain volume at a time (not a continuous feed)
 - Slow (10-20 minutes residence time)
- · Cannot dry sludge, wet waste, fine grains, any similar materials
- Burns fossil fuel to create heat
- Expensive because use of fossil fuel
- Only 10-15% of cylindrical volume is filled
- High energy consumption, low output

Companies

Whiting Equipment Canada Inc. (Swenson dryers)

- Ambient air temp up to 350 degrees F
- Direct heat dryer produced hot air- up to 1800 degrees F

Teaford

• 143000 PPH water evaporation from 158000 PPH bone dry material

GEA Barr-Rosin

Evaporate 30-40 tonnes/hour

FLASH DRYERS/PNEUMATIC DRYER

Purposes

- Sludge
- Wet cakes
- Food
- Minerals
- Chemicals
- slurries

Structure

- Spin flash dryer
 - Horizontal agitator disperses mass that comes in contact with heat to dry
- Cage Mill flash dryer
 - Vertical pin type rotary cages
 - Wet mass fed through center for direct heat contact
 - Rotation disperses feed while drying

Cost

- Approx. Output of few hundred kg/hour hundreds of tons/hour
- Approx temp 500-600 degrees C

Advantages

- 0.5-2 seconds of residence time
- Cylindrical shape and short time = high volume of mass that can be dried
- Ideal for fine grained materials

Disadvantages

- Not ideal for heat sensitive materials
- Only dries surface moisture

Companies

GEA Barr-Rosin

- Use of scrubbers to clean exhaust gas to meet emission requirements
- Elevated drying temperature
 - Flashes off surface moisture, drying gas is instantly cooled w/o increasing product temperature
- 20+ tons of water evaporation/hour
- Inlet air temp 100-650 degree C

Figure 1 GEA Barr-Rosin Flash Dryer

• Airflow can exceed 120 000 cfm (200 000 m3/hour)

Whiting Equipment Canada Inc. (Swenson dryers)

• Available in carbon steel, stainless steel and other alloys

RING DRYERS (modified flash dryer)

Purposes

- Sludge
- Food (byproducts)
- grains

Structure

- Materials' first heat contact is a flash of heat
- Particles pass through rings for further drying (if larger/wet particle, conveyed back to dry again)
- Materials are then conveyed to a second chamber column
- Heated air is moved through column, drying particles
- Particles pass through rings for further drying (if larger/wet particle, conveyed back to dry again)

Cost

Advantages

- · Thorough and complete drying
- Short residence time
 - 2 seconds flash dry
 - o 4 minutes mixing recycle system

Disadvantages

Many parts to machine and drying process

Companies

GEA Barr-Rosin

- Presence of "manifold" or "internal classifier"
- Centrifugal airstream and adjustable splitter blades move heavier, semi dried material back into dryer
- Lighter dryer continues through conveyor
- Selective residence time
- 150 000cfm (250000 m³/hr)
- Natural gas, steam, hot oil, flue gases used to operate

FLUID BED DRYERS

Purposes

- Food
- Chemical
- Mineral
- Polymer
- Powders/crystals/granules

Structure

- Air supplied through perforated distributor plate
- Air flow velocity is sufficient to support mass weight
- Air turbulence causes materials to become suspended on a cushion of air or gas
- Solids behave like boiling liquid

Cost

Advantages

- · Can hold high volumes
- Optimum heat transfer efficiency
- Good mixture
 - Frequent collisions between particles allow for

Disadvantages

 Not easily operated with all the different parts

Companies

Whiting Equipment Canada Inc. (Swenson dryers)

- Stationary and upright
- Use of feed chute or screw feeder
- Fluidized by gas (nitrogen)

GEA

- Niro Vibro-Fluidizer
 - 0
- Size 300 ft²
- Temperature up to 1200 degrees C
- High thermal capacity
 - o ensures accurate temperature control
 - o uniform heat treatment
- 90f heat supplied through steam or circulating fluid
 - o Reduction in airflow = reduction in emission, plant size and operating costs

Figure 2 Open system of a Fluid Bed Dryer

SPRAY DRYERS

Purposes

- Food
- Pharmaceutical

Structure

- Atomizes a wet solution into drop lets
- Gas/spray mixing chamber
- Heated air is sprayed at top of coneshaped chamber
 - Wet is mixture comes in contact with heat
 - Dried particles gather at bottom

Cost

Advantages

evenly and thoroughly dried particles

Disadvantages

- only produces powder solids
- requires adequate droplet and spraying distance

Companies

GEA Filtermat

- requires a longer drying time
- includes conveyor for second stage drying
- air blows downward

Open-mode design with single-point powder discharge Feed Hoder Fan Filter Dryling Cyclenc Reg filter Ourlier gas Main proader fraction

Figure 3 GEA Niro Spray Dryer diagram

Whiting Equipment Canada Inc. (Swenson dryers)

•

ARTICLES

From Operating Ease to Operating Costs: Weighing Differences in DDGS Dryers

http://www.ethanolproducer.com/article.jsp?article_id=3032

Summary:

Operability and Control

- Rotary (good)
 - o continues to run even if there is process problem
 - Material is too wet, sugar content too high, too much material in machine
 - o Adjustable temperature for different volumes of mass
- Ring (good)
 - Small volume of material = Produces better quality product
- Rotary (bad)
 - Long residence time = long and hard recovery
 - Especially if volume of mass is high
- Ring (bad)
 - Short residence time = smaller processing size

Layout

- Rotary
 - Requires large floor space and concrete foundation, lots of foundation for all part required
 - o Not much steel involved
- Ring
 - Steel structure
 - Only fan needs substantial foundation

Material Handling and Recycling Systems

- Rotary
 - Long conveyor
 - Dry product deposited on one end, feeder 60-70 feet at other end
- Ring
 - Short conveyor
 - Assist of gravity in process

Energy Usage

- Rotary
 - Large diameter seals under suction = leakage
 - o Use 5-10% more heat

Electrical Usage

- Rotary
 - o Rotation of drum to convey product
- Ring
 - Conveys pneumatically and at high velocity
 - Consumes more power

Cost of electrical power is much less than heat

Maintenance

- Rotary
 - o Mechanical systems on drum and extra conveyors require regular maintenance
- Ring
 - o Only main fan needs maintenance